Basic fibroblast growth factor stimulates surface expression and activity of Na(+)/H(+) exchanger NHE3 via mechanism involving phosphatidylinositol 3-kinase.
نویسندگان
چکیده
Na(+)/H(+) exchanger NHE3 is a plasma membrane (PM) protein, which contributes to Na(+) absorption in the intestine. Growth factors stimulate NHE3 via phosphatidylinositol 3-kinase (PI3-K), but mechanism of this process is not clear. To examine the hypothesis that growth factors stimulate NHE3 by modulating NHE3 recycling, and that PI3-K participates in this mechanism, we used PS120 fibroblasts expressing a fusion protein of NHE3 and green fluorescent protein. At steady state, approximately 25% of cellular NHE3 content was expressed at PM. Inhibition of PI3-K decreased PM expression of NHE3, which correlated with retention of the exchanger in recycling endosomal compartment. In contrast, basic fibroblast growth factor (bFGF) increased PM expression of NHE3, which was associated with a 2-fold increase in rate constant for exit of the exchanger from the recycling compartment. Qualitatively similar effects of bFGF were observed in cells pretreated with PI3-K inhibitors, but their magnitude was only approximately 50% of that in intact cells. These data suggest that: (i) bFGF stimulates NHE3 by increasing PM expression of the exchanger; (ii) PI3-K mediates PM expression of NHE3 in both basal and bFGF-stimulated conditions, and (iii) not all of the effects of bFGF on NHE3 expression are mediated by PI3-K, suggesting additional regulatory mechanisms.
منابع مشابه
Lysophosphatidic acid 5 receptor induces activation of Na(+)/H(+) exchanger 3 via apical epidermal growth factor receptor in intestinal epithelial cells.
Na(+) absorption is a vital process present in all living organisms. We have reported previously that lysophosphatidic acid (LPA) acutely stimulates Na(+) and fluid absorption in human intestinal epithelial cells and mouse intestine by stimulation of Na(+)/H(+) exchanger 3 (NHE3) via LPA(5) receptor. In the current study, we investigated the mechanism of NHE3 activation by LPA(5) in Caco-2bbe c...
متن کاملRegulation of apical NHE3 trafficking by ouabain-induced activation of the basolateral Na+-K+-ATPase receptor complex.
The long-term effects of ouabain on transepithelial Na(+) transport involve transcriptional downregulation of apical Na(+)/H(+) exchanger isoform 3 (NHE3). The aim of this study was to determine whether ouabain could acutely regulate NHE3 via a posttranscriptional mechanism in LLC-PK1 cells. We observed that the basolateral, but not apical, application of ouabain for 1 h significantly reduced t...
متن کاملDopamine acutely stimulates Na+/H+ exchanger (NHE3) endocytosis via clathrin-coated vesicles: dependence on protein kinase A-mediated NHE3 phosphorylation.
Dopamine (DA) is a key hormone in mammalian sodium homeostasis. DA induces natriuresis via acute inhibition of the renal proximal tubule apical membrane Na(+)/H(+) exchanger NHE3. We examined the mechanism by which DA inhibits NHE3 in a renal cell line. DA acutely decreases surface NHE3 antigen in dose- and time-dependent fashion without altering total cellular NHE3. Although DA(1) receptor ago...
متن کاملInsulin activates Na(+)/H(+) exchanger 3: biphasic response and glucocorticoid dependence.
Insulin is an important regulator of renal salt and water excretion, and hyperinsulinemia has been implicated to play a role in hypertension. One of the target proteins of insulin action in the kidney is Na(+)/H(+) exchanger 3 (NHE3), a principal Na(+) transporter responsible for salt absorption in the mammalian proximal tubule. The molecular mechanisms involved in activation of NHE3 by insulin...
متن کاملCharacterization of the regulation of renal Na+/H+ exchanger NHE3 by insulin.
Insulin receptors are widely distributed in the kidney and affect multiple aspects of renal function. In the proximal tubule, insulin regulates volume and acid-base regulation through stimulation of the Na(+)/H(+) exchanger NHE3. This paper characterizes the signaling pathway by which insulin stimulates NHE3 in a cell culture model [opossum kidney (OK) cell]. Insulin has two distinct phases of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 275 11 شماره
صفحات -
تاریخ انتشار 2000